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Abstract:

This paper presents a controller for a free-climbing robot. Given a pre-planned
path, a loop is closed around desired robot chassis position to generate cartesian
feedback forces. A convex optimization problem is then solved in real-time to
find a torque input to the robot that will achieve these feedback forces while not
exceeding torque limits or violating friction constraints. The effectiveness of this
controller is demonstrated both in simulation and with experimental hardware.
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1. INTRODUCTION

1.1 Owverview

This work is part of an ongoing effort at Stanford
University to enable a robot to free-climb vertical
rock. Achieving this goal requires that issues be
addresed in at least five topic areas: hardware
design, sensing, planning, control and grasping
(Bretl et al., 2003b). Previous papers (Bretl,
2006; Bretl et al., 2003a; Bretl et al., 2003b) have
focused primarily on the planning problem. This
paper focuses on the design of a control system.

The target robot used for these studies is JPL’s
LEMUR robot, shown in Fig. 1. This four-limbed
robot has sufficient strength to free-climb. An
array of end effectors is available for LEMUR, of
which simple “fingers” are used in this study. Joint
angles as well as joint torques are sensed. Cameras
are also available which can be mounted on the
chassis of this robot.

In addition to LEMUR, a robot with similar ge-
ometry has been used to develop and test various
control schemes for free-climbing. This robot is
Stanford’s Free-Flyer shown in Fig. 2. It operates
in the horizontal plane by floating on an air cush-

Fig. 1. Photograph of JPL’s LEMUR robot.

ion. Gravity is simulated by hanging weights over
the edge of the granite table.

1.2 Previous Results: Planning

Planning the motion of a free-climbing robot is
a complex problem. The only thing that keeps
the robot from falling is frictional contact with
a carefully chosen set of holds (natural features
such as holes or protrusions). The robot must
apply contact forces at these holds that exactly
compensate for gravity without causing hands or
feet to slip. To take a single step upward, it must
follow a continuous trajectory — consisting of joint
angles, chassis position and orientation, contact



Fig. 2. Photograph of Stanford’s Free-Flyer robot.

forces, and joint torques — that reaches a new hold
without violating these constraints. To take many
steps, it must follow a sequence of trajectories,
avoiding those which might lead to dead-ends
where progress is no longer possible.

Three basic constraints must be addressed by the
planner. The first is that the robot’s center of mass
must remain above a support polygon to ensure
that the robot does not fall. The second is that the
contact forces between the robot’s hands and the
holds they are contacting remain within friction
cones to ensure that the hands do not slip. The
third is that the joint torques must remain below
limits to ensure that joint motors do not saturate.

The feasibility of solving this planning problem,
given a model of the robot and its environment,
was developed and demonstrated in (Bretl, 2006;
Bretl et al., 2003a; Bretl et al., 2003b). In partic-
ular, a long climb using JPL’s LEMUR robot was
demonstrated in (Bretl, 2006).
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Fig. 3. Simplified block diagram of the controller
used on LEMUR.

A simplified block diagram of the control system
used in (Bretl, 2006) is presented in Fig. 3. In
this approach, the joint-angles calculated in the
planner are used as commands to feedback loops
on the robot. This type of controller will be
referred to as joint-angle control

The approach presented in Fig 3 can and did work
well, but it is not robust to errors. In particular, it
assumes perfect knowledge of the hold locations,
zero error in the joint controllers, and no un-
modeled disturbances. If these errors are small,
and if there is sufficient margin designed into the
planned trajectory, successful climbs are possible.

However, in practice these assumptions are often
violated, and a more robust control system is
required.

The goal of this paper is to present and demon-
strate such a modified control system.

1.8 Proposed Control System

The proposed control system is presented in
Fig. 4. It incorporates two fundamental modifi-
cations to the system shown in Fig. 3. First, it
replaces joint angle tracking with a control loop
around the cartesian robot position. Second, it
checks in real-time whether constraints are being
satisfied based on measurements of the robot’s
configuration and modifies (or redistributes) joint
torque commands to ensure that no constraint is
violated. This is done by solving a linear program-
ming problem inside the primary control loop.
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Fig. 4. Block diagram of the robot controller.

In this paper, the real-time constraint calculations
include the limits on joint torques (i.e. saturation)
and the requirement that the contact forces re-
main within specified friction cones (i.e. no slip).
However, it is assumed that the plan has suffi-
cient margin to ensure that the robot’s center
of mass (CM) remains over its support polygon
(i.e. does not fall) given a cartesian robot position
controller. This assumption is reasonable and is
made for convenience. It is not required, however,
and will be relaxed in future work.

This paper develops the controller shown in Fig. 4,
referred to hereafter as Cartesian Force Convex
(CFC) control. Results of using CFC control both
in simulation and on the Free-Flyer hardware are
presented.

2. RELATED WORK

Robotic climbing research has focused either on
robots whose mechanical design is specialized for
the climbing task or on robots that climb in a spe-
cialized environment. For example, the research
described in Bevly et al. (2000) and Sunada et
al. (1994) used variations on Jacobian Transpose
control on a robot which interacted with its en-
vironment through a series of pegs and hooks.
Because of the specialized end effectors, these re-
searchers did not need to consider frictional force



constraints for their application. The research of
Shapiro et al. (2005) studied an application simi-
lar to climbing, but it focused on hold selection for
a robot moving in a horizontal tunnel. By choosing
holds that will immobilize the robot even when
disturbed, they were able to control their robot
using only joint-angle control.

Many aspects of the free climbing problem, par-
ticularly frictional constraints and redundancy
caused by the existence of closed chains, make
it similar to the problems of walking robots and
object grasping. McGhee and Orin (1976) were
among the first to note that it is possible to
use mathematical programming to resolve redun-
dancy in over-actuated systems, such as legged
robots. Waldron (1986) developed simplifications
to the walking robot problem that enable rapid,
but suboptimal, calculations. Cheng and Orin
(1989) and Nahon and Angeles (1992) devel-
oped algorithms for linear programming (LP) and
quadratic programming (QP) respectively to con-
trol simulated grasping robots in real-time. This
technique was implemented on a real robot hand
by Schlegl et al. (2001), using LPs to optimize
forces even while changing grasps. Fujimoto and
Kawamura (1998) used a QP in their control loop
to control not only the endpoint forces of a simu-
lated bipedal walking robot, but also the position
of the robot’s center of mass.

3. ROBOT CONTROL
3.1 Configuration Definition

Fig. 5. Diagram of a 2D climbing robot showing
lengths (L) and states. The robot chassis
position is defined by = = (z,y,0). Joint
angles are q = (q1, g2, -..)-

A diagram of a climbing robot analogous to
LEMUR is shown in Fig. 5. The robot moves in
response to torques applied by motors at each
joint, where each of these torques is limited to
a maximum value. This robot interacts with its
environment by placing the endpoints of its arms
on frictional surfaces, or holds. The surface of each
hold can be characterized by a friction cone. The

edges of the friction cone define the maximum
angle to the hold that force can be applied.

The sensors on-board the robot are assumed to
be sufficient to measure or estimate joint an-
gles, joint angular velocities, joint torques, body
position, and body orientation. A typical sensor
suite would include joint angle encoders, torque
sensors, inclinometers, and accelerometers. Ideally
the cartesian body position would be sensed using
external sensors such as cameras or a localized
position sensing system.

3.2 Controller Description

A diagram of the overall control architecture was
shown in Fig. 4. The control of the robot takes
place in two stages. In the first stage a desired
force on the robot body, Fges, is calculated based
on the difference between the desired cartesian
position of the robot chassis generated by the
planner, ®g4es, and the current best estimate of
this value x as determined from the available
sensors. This position x is assumed to have two
translational and one rotational degree of freedom
as shown in Fig. 5. This control can be of any type,
but a simple PD controller proved adequate in the
present study.

The second stage of control is to calculate con-
trol inputs, that is, joint torques 7, that will
result in Fyes being applied to the robot chas-
sis. This mapping is not unique. There are more
torque motors than there are dimensions in Fges.
Hence, a nullspace exists, and the existence of
this nullspace makes it possible to compute a
mapping that satisfiies the constraints on maxi-
mum torques and tip forces. For example, if the
system has N 2-joint arms in contact with holds,
the system then has only 3 degrees of freedom,
but 2N torques to control. This means there is a
2N — 3 dimensional nullspace that can be used for
adjusting the magnitude and directions of forces
on holds. For a robot with N = 2, the direction of
this nullspace can be simply visualized: it is the
direction that corresponds to the robot pinching
its two holds. Any added force from the nullspace
will not cause the robot to move but will change
the direction of forces exerted by the hands on a
hold.

3.8 LP Setup

Presented here is a method for formulating the
objectives and constraints described above as a
Linear-Programming (LP) problem and solving
it using a convex optimization technique. The
formulation is presented in two dimensions for
clarity. However, this approach applies directly
to the full three-dimensional problem (Bretl et
al., 2003a).



Each hold is modeled as a frictional point con-
tact as shown in Fig. 6. Assuming dry Coulomb
friction, the reaction force f, at each hold i is
constrained to vary within a friction cone FC;
centered about a normal vector. Defining unit
vectors f;;1 and fig along each edge of the cone,
the sum of contact forces f“ﬁl + figﬁg = f,
lies within the friction cone F'C; if and only if
fi1, fio > 0. Therefore, for each hold 4, the friction
cone constraint on the reaction force can be ex-
pressed by this linear constraint on contact forces.
That is, the robot hands are not slipping strictly
if

F=0 (1)

To describe the constraint that achieves Fyes,
consider a stance with limbs in contact with N
holds. Let 7; = (x;,y;) be the location of each
hold i with respect to the robot chassis location
(¢, Ye). Assume that the robot has mass m, the
vector from the chassis to the center of mass of
the robot is 7y, the force of gravity acting at the
CM is F,, and the desired force on the chassis is
Fyes. Finally, let f, = [fa fig]T and define the
following matrix for each hold:

fil fi2
(Tz' X fil)z (T‘z‘ X fm)j

where (ri X fll) is the z component of the
z

F; =

cross product. Then the robot can achieve Fg.

if f1,...,fx = 0 exist such that
f1 0
[Fi -« Fnl| @ |+ —mg = Fles
fN (T'CM X Fg)z
T 7
For convenience, define f = [fl fN} and

C, =[F;...Fyl.
At a particular center of mass location define

0
—mg
(rew X Fg),

dIZFdes_

So to achieve the desired force on the robot
chassis, the vector of contact forces must satisfy

Cif=d (2)

(xiyi)

Fig. 6. Friction cone. A reaction force f, =

filfil +fi2fi2

In order to compute torques, it is also necessary
to establish the relationship between the contact
forces and the joint torques. Let 7;; and 7;5 be
the torque in the shoulder and elbow respec-
tively of each limb j in contact with a hold. Let
T = [711,712,...,TN1,TN2}T. If the robot moves
slowly through a climb, static equilibrium can be
assumed and the relationship can be calculated by
considering the sum of the forces on each joint of
the arm. The result is an equation of the form:

T, 0 --- 0O

0 Ty--- O
T=Tf-g=| . . . f-9

00 Tn

where each T matrix is a two by two matrix and g
is a vector of torques due to gravity on the arms.

Furthermore, each joint motor has a maximum al-
lowable output, further constraining the problem
such that

T < Tmaz (4)

So, the problem of computing torques is the prob-
lem of finding contact forces f and joint torques 7
subject to the four constraints given in Eqs. 1-4.

These constraints still allow redundant solutions.
A best one can be selected with a multiple ob-
jective cost function. A two term function is used
in this study. The first term aims to minimize a
weighted 1-norm of the joint torques. This linear
cost can be written as:
)
, T
Tmaz,N2

1
diag ( yeen
Tmaz,11

The second term aims to center each contact force
as much as possible in its friction cone. Ideally, if
for each hold f;; = f;2, all contact forces would be
in the center of their friction cones. This can be
accomplished by minimizing (for the case of two
holds in 2D):

Ji =

1

1-10 0
J2:|fi2—fi1|1=HO 0 1_1]f

1

These two objectives are weighted by p and can
be minimized by solving the following linear pro-
gram:

min Jj + pJdo
such that Cif =d;
F=0
T=Tf-g
T < Timaa

This type of linear program can be solved using
any of a number of existing software libraries. For
this study it is solved by the simplex method using
the open source software GNU Linear Program-
ming Kit (GLPK).



4. SIMULATION AND EXPERIMENTS

In order to demonstrate the utility of the proposed
control approach, simulations in MATLAB and
experiments with the Stanford Free-Flying robots
were performed.

4.1 Simulation Results

A dynamic simulation in MATLAB was performed
of the LEMUR robot executing a complex climbing
maneuver. This simulation is performed at 200 Hz.

Fig. 7. (a) Photo of the LEMUR robot. (b) A
simulation of LEMUR in this same position

The commanded maneuver is to begin at the
position shown in Fig. 7 and to raise the robot
chassis up while translating left. This maneuver
is difficult because it requires torques in the joints
of two arms that approach their limits.
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Fig. 8. Using joint control, the simulated LEMUR
exceeds its allowable torque (3 Nm) and
comes to a near halt. Using CFC control, the
limit is exactly achieved, but never exceeded.

The first control logic tested was joint-angle con-
trol. Joint torque limits of 3 Nm were assumed
and Fig. 8 presents the results for a single repre-
sentative arm. During this portion of the climb the
motors required more than the allowable torque,
which in turn resulted in the robot slowing to a
halt.

When CFC control is applied to the same LEMUR
simulation, the climb is successful. The maximum

tracking error of the robot chassis is 2 mm and the
highest torques required do not exceed the 3 Nm
maximum. Fig. 8 shows the joint torques used for
this trajectory.

4.2 Ezperimental Results with the Free-Flyer

As another demonstration of CFC, a chimney
climb using a Stanford Free-Flying robot was
performed. This robot floats on an air cushion
above a flat granite table. It has two two-link
arms. To simulate gravity a weight is attached
to the robot that hangs over the edge of the
table via a pulley. The computer onboard the free-
flying robots has a 200 MHz processor and runs a
control loop at 120 Hz. Onboard batteries enable
tetherless operation of the vehicle.

Fig. 9. Photograph of robot endpoint in contact
with hold designed to simulate friction.

The endpoint of each robotic arm is a rubber
wheel on a bearing. These endpoints make contact
with angled holds, as shown in Fig. 9. This type
of contact simulates a frictional hold where the
normals to the flat surfaces define the edges of
a friction cone. This type of hold is convenient
for experiments in that it provides a clear visual
display. Any motion of the wheel is equivalent to
a violation of a friction cone constraint.

Chimney climbing is a difficult manuever. It is
characterized by having vertical walls, and there-
fore horizontal hold normals. In this situation the
climber must continually exert pressure normal to
the hold in order to not slip out of the friction
cones while exerting vertical pressure.

Using only joint-angle control, this chimney climb
could not be completed successfully. The friction
cone constraints were violated and the hands
slipped.

Using CFC control the robot climbed successfully.
The results are shown in Fig. 10. The robot was
instructed to track a sinusoidal trajectory in the
y direction having a 9 cm amplitude. The holds
used in the experiment had a half-angle of 45
degrees. Visual observation showed that the hands
did not slip and estimation of tip force angle from
experimental data confirmed that forces were not
applied that violated friction constraints.



Fig. 10. The free-flying robot ascends using verti-
cal holds.

One of the advantages of CFC control is its ro-
bustness to many types of uncertainties. In par-
ticular, a real climb will have imperfect knowledge
of the holds. Unknown friction properties can be
compensated for by assuming appropriate margins
when calculating the forces to apply. Some error
in translational location of a hold can also be
compensated. To demonstrate this, climbing holds
were placed in the same chimney configuration as
described above, but the robot’s right hand hold
was displaced 2.5 cm in the negative x direction.
To simulate unknown uncertainties, the controller
was not changed to reflect the new configura-
tion. The same trajectory was commanded (9 cm
amplitude in the y direction) as performed in
previous experiments. Visual observation and f
calculation for this experiment again showed that
the hands did not slip at any point during the
trajectory.

5. CONCLUSION

This paper describes a controller for a free-
climbing robot that tracks a desired trajectory
while maintaining equilibrium and not violating
motor constraints. This is done by feeding back
the position of the robot, generating a desired
force to drive this position to a desired location.
A linear program is then solved in real-time to
achieve this force without causing hands to slip
out of their friction cones. The effectiveness of this
controller is shown in simulation and experiment.
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